Статика определить реакции опор. Определение реакции опор с моментом

На опорах балок возникают реакции, с определения которых следует начинать решения всех задач по расчету изгиба.

Реакции опор определяются из уравнений равновесия (статики), которые можно представить в двух различных вариантах:

1) в виде суммы проекций всех сил на оси х и у , а также суммы моментов сил (включая реакции) относительно любой точки по оси балки:

2) в виде суммы всех сил на одну из координатных осей х или у и двух сумм моментов сил (включая реакции) относительно двух точек, лежащих на оси балки:

Выбор того или оного варианта составления уравнений равновесия, а также выбор точек по направлению координатных осей, используемых при составлении этих уравнений, производится в каждом конкретном случае с таким расчетом, чтобы по возможности не производить совместное решение уравнений. Для проверки правильности определения опорных реакций полученные их величины рекомендуется подставлять в какое-либо уравнение равновесия, не использованное ранее.

При определении реакций их направления можно выбирать произвольно. Если же реакции в расчете оказались отрицательными, то это означает, что их направление выбрано неправильно. В этом случае на расчетной схеме первоначальное направление реакций перечеркивают и указывают их обратное направление. В последующих расчетах величины реакций считаются положительными.

Однако можно заранее предугадать правильное направление реакций на основании мысленно представленной упругой линии балки после ее нагружения внешними усилиями (рис 8.5): при «отрыве» балки от опоры (опора А ) реакция R А имеет направление к опоре; при «вдавливании» балки в опору (опора В ) реакция R В имеет направление от опоры.

Статика определить реакции опор. Определение реакции опор с моментом

Рисунок 8.5 – К определению направлению реакций

Рассмотрим типичные случаи определения реакций для простейших видов нагрузок.

Если на балку действует интенсивностью , как показано на рис.8.6, то при определении опорных реакций нагрузка заменяется ее равнодействующей Р , равной произведению интенсивности нагрузки на длину участка ее действия l

Примером сплошной равномерно распределенной нагрузки может служить собственный вес балки или часто расположенные нагрузки на участке ее длины.

Статика определить реакции опор. Определение реакции опор с моментом

Рисунок 8.6 – Случай равномерно распределенной нагрузки на балку

Точка приложения сплошной равномерно распределенной нагрузки лежит посредине того участка, на который она действует; при треугольном законе действия распределенной нагрузки равнодействующая прикладывается по ее центру тяжести.

Размерность интенсивности нагрузки выражается обычно в кН/м или кН/см.

Рассмотрим последовательность определения опорных реакций для случая нагрузки балки, показанной на рис.8.7:

1. На расчетной схеме балки показывается принятое направление реакций R А и R В , возникающих на опорах. Поскольку внешняя нагрузка действует в вертикальной плоскости перпендикулярно оси балки, то горизонтальная реакция на шарнирно-неподвижной опоре А отсутствует.

2. Поскольку в данном случае неизвестных реакций две (R А и R В ), то в качестве равновесия для определения реакций принимается два уравнения

При составлении этих условий равновесия следует принять правило знаков для моментов сил, включая реакции. Обычно принимается такое привило для внешних (активных) знаков: если моменты от сил направлены по часовой стрелке, то они считаются положительными.

Тогда первое условие равновесия (8.4) приводит к уравнению относительно неизвестной реакции R В (см. рис.8.6)

Статика определить реакции опор. Определение реакции опор с моментом
Статика определить реакции опор. Определение реакции опор с моментом

Реакция получалась положительной, следовательно ее направление принято правильным.

Аналогично используем второе условие равновесия (8.4), приводящее к уравнению относительно второй реакции R А :

Статика определить реакции опор. Определение реакции опор с моментом
Статика определить реакции опор. Определение реакции опор с моментом

Снова реакция оказалась положительной, следовательно ее первоначально направление на расчетной схеме выбрано правильно.

3. Правильность определения величин реакций проверяем из использования еще одного, ранее не использованного, условия равновесия

При этом проекции сил, совпадающих с направлением оси у , считаются положительными, а направленных в обратную сторону – отрицательными.

Тогда на основании использования условия (8.5) имеем:

Статика определить реакции опор. Определение реакции опор с моментом

Полученное тождество (0=0) свидетельствует о правильности определения величин реакций в расчете изгиба балки.

Рассмотрим другой типичный случай нагрузки в виде внецентренно расположенной сосредоточенной силы Р по длине балки (рис.8.7).

Статика определить реакции опор. Определение реакции опор с моментом

Рисунок 8.7 – Случай нагрузки балки сосредоточенной силой

1. Покажем на расчетной схеме реакции R А и R В . Они направлены, как было указано выше, навстречу нагрузке.

2. Реакции определим из условий равновесия:

Реакции получились положительными, следовательно, их первоначальное направление на расчетной схеме выбрано верно.

Заметим заодно, что реакция на опоре В оказалась больше, чем реакция на опоре А R В ˃R А . Это следует из того, что сила Р находится ближе к опоре В , а значит и нагружает ее больше.

3. Проверка:

Полученное тождество свидетельствует о правильности определения реакции.

Рассмотрим еще один случай нагрузки балки в пролете внешним сосредоточенным моментом (рис. 8.8), что имеет место в практических расчетах изгиба.

𝔐
Статика определить реакции опор. Определение реакции опор с моментом

Рисунок 8.8 – Случай нагружения балки сосредоточенным моментом

1. Покажем на расчетной схеме предполагаемое направление реакций (вначале мы не знаем, правильно ли приняты такие направления).

2. Реакции определяем из уравнений равновесия:

Реакция получилась положительной, следовательно, ее первоначальное положение выбрано верно.

Реакция оказалась отрицательной, а это означает, что ее направление выбрано неправильно. Поэтому на расчетной схеме зачеркиваем первоначально (ошибочно) принятое направление R А и показываем обратное (истинное) направление (см.ри.8.8). В дальнейших расчетах считаем реакцию R А с правильным направлением положительной.

3. Проверка:

Использованное уравнение равновесия для балки выполняется, а это означает правильность определения реакций и их направления.

Если балка при поперечном изгибе имеет такие опоры, что общее число реакций, возникающих на опорах, не превышают двух, то реакции всегда могут быть определены из двух уравнений равновесия типа (8.2). Такие балки, реакции которых определяются из этих уравнений статики, называются статически определимыми балками. Эти балки могут быть таких простейших видов (рис. 8.9):

Рисунок 8.9 – Статически определимые балки

1) балка с одним жестко защемленным и другим свободным концом, иначе консоль (рис.8.9, а ); 2) шарнирно-опертые балки (рис.8.9, б и 8.9, в ).

Балки, у которых общее число реакций опор больше числа уравнений равновесия, называются статически неопределимыми (расчет их изгиба будет рассмотрен в п. 8.10). Для таких балок реакции опор определяются из совместного решения уравнений статики и условий совместимости деформаций.

ПРИМЕРЫ РЕШЕНИЯ ЗАДАЧ ПО СТАТИКЕ

Пример 1. Определить реакции опор горизонтальной балки от заданной нагрузки.

Дано:

Схема балки (рис. 1).

= 20 кН, = 10 кН, М = 4 кНм, = 2 кН/м, =2 м, =3 м, .

___________________________________

А и В .

Статика определить реакции опор. Определение реакции опор с моментом

Рис. 1

Решение:

Рассмотрим равновесие балки АВ (рис. 2).

К балке приложена уравновешенная система сил, состоящая из активных сил и сил реакции.

Активные (заданные) силы:

Пара сил с моментом М , где

Сосредоточенная сила, заменяющая действие распределенной вдоль отрезка АС нагрузки интенсивностью .

Величина

Линия действия силы проходит через середину отрезка АС .

Силы реакции (неизвестные силы):

Заменяет действие отброшенного подвижного шарнира (опора А ).

Реакция перпендикулярна поверхности, на которую опираются катки подвижного шарнира.

Заменяют действие отброшенного неподвижного шарнира (опора В ).

Составляющие реакции , направление которой заранее неизвестно.

Расчетная схема

Статика определить реакции опор. Определение реакции опор с моментом

Рис. 2

Для полученной плоской произвольной системы сил можно составить три уравнения равновесия:

Задача является статически определимой, так как число неизвестных сил (,,) – три- равно числу уравнений равновесия.

Поместим систему координат XY в точку А , ось AX направим вдоль балки. За центр моментов всех сил выберем точку В .

Составим уравнения равновесия:

Решая систему уравнений, найдем ,,.

Статика определить реакции опор. Определение реакции опор с моментом

Определив,, найдем величину силы реакции неподвижного шарнира

В целях проверки составим уравнение

Если в результате подстановки в правую часть этого равенства данных задачи и найденных сил реакций получим нуль, то задача решена – верно.

Реакции найдены верно. Неточность объясняется округлением при вычислении .

Ответ: 

Пример 2. Для заданной плоской рамы определить реакции опор.

Дано:

Схема рамы рис.3

= 20 кН, = 10 кН, М = 4 кНм, = 2 кН/м, =2 м, =3 м, .

______________________________

Определить реакции опор рамы.

Статика определить реакции опор. Определение реакции опор с моментом

Рис. 3

Решение:

Рассмотрим равновесие жесткой рамы АВЕС (рис. 4).

Расчетная схема

Статика определить реакции опор. Определение реакции опор с моментом

Рис. 4

Система сил приложенных к раме состоит из активных сил и сил реакций.

Активные силы:

Пара сил с моментом , , .

, заменяют действие распределенной нагрузки на отрезках ВД и ДЕ .

Статика определить реакции опор. Определение реакции опор с моментом

Линия действия силы проходит на расстоянии от точки В .

Линия действия силы проходит через середину отрезка ДЕ.

Силы реакции:

Заменяют действие жесткого защемления, которое ограничивает любое перемещение рамы в плоскости чертежа.

К раме приложена плоская произвольная система сил. Для нее можем составить три уравнения равновесия:

, , 

Задача является статистически определимой, так как число неизвестных тоже три – , , .

Составим уравнения равновесия, выбрав за центр моментов точку А, так как ее пересекают наибольшее число неизвестных сил.

Решая систему уравнений, найдем , , .

Статика определить реакции опор. Определение реакции опор с моментом

Для проверки полученных результатов составим уравнение моментов вокруг точки С.

Подставляя все значения, получим

Реакции найдены верно.

Ответ:

Статика определить реакции опор. Определение реакции опор с моментом
Статика определить реакции опор. Определение реакции опор с моментом

Пример 3 . Для заданной плоской рамы определить реакции опор.

Дано: вариант расчетной схемы (рис. 5);

Р 1 = 8 кН; Р 2 = 10 кН; = 12 кН/м; М = 16 кНм; = 0,1 м.

Определить реакции в опорах А и В .

Статика определить реакции опор. Определение реакции опор с моментом

Рис.5

Решение . Заменяем действие связей (опор) реакциями. Число, вид (сила или пара сил с моментом), а также направление реакций зависят от вида опор. В плоской статике для каждой опоры в отдельности можно проверить, какие направления движения запрещает телу данная опора. Проверяют два взаимно перпендикулярных смещения тела относительно опорной точки (А или В ) и поворот тела в плоскости действия внешних сил относительно этих точек. Если запрещено смещение, то будет реакция в виде силы по этому направлению, а если запрещен поворот, то будет реакция в виде пары сил с моментом (М А или М В).

Первоначально реакции можно выбирать в любую сторону. После определения значения реакции знак «плюс» у него будет говорить о том, что направление в эту сторону верное, а знак «минус» – о том, что правильное направление реакции противоположно выбранному (например, не вниз, а вверх для силы или по часовой стрелке, а не против неё для момента пары сил).

Исходя из вышесказанного, показаны реакции на рис. 5. В опоре А их две, т. к. опора запрещает перемещение по горизонтали и вертикали, а поворот вокруг точки А – разрешает. Момент М А не возникает, т. к. эта шарнирная опора не запрещает поворот телу вокруг точки А . В точке В одна реакция, т. к. запрещено перемещение только в одном направлении (вдоль невесомого рычага ВВ ¢ ).заменяется эквивалентной сосредоточенной силой . Линия действия её проходит через центр тяжести эпюры (для прямоугольной эпюры центр тяжести на пересечении диагоналей, поэтому сила проходит через середину отрезка, на который действует ). Величина силы равна площади эпюры, то есть

  Как начертить правильный овал. Построение овала по двум осям

Затем необходимо выбрать оси координат x и y и разложить все силы и реакции не параллельные осям на составляющие параллельные им, используя правило параллелограмма. На рис.5 разложены силы , ,. При этом точка приложения результирующей и её составляющих должна быть одна и та же. Сами составляющие можно не обозначать, т. к. их модули легко выражаются через модуль результирующей и угол с одной из осей, который должен быть задан либо определен по другим заданным углам и показан на схеме. Например для силы Р 2 модуль горизонтальной составляющей равен , а вертикальной- .

Теперь можно составить три уравнения равновесия, а так как неизвестных реакций тоже три (,,), их значения легко находятся из этих уравнений. Знак у значения реакции, о чем говорилось выше, определяет правильность выбранных направлений реакций. Для схемы на рис. 5 уравнения проекций всех сил на оси х и и уравнения моментов всех сил относительно точки А запишутся так:

Статика определить реакции опор. Определение реакции опор с моментом

Из первого уравнения находим значение B , затем подставляем его со своим знаком в уравнения проекций и находим значения реакций Х А и У А.

В заключение отметим, что удобно уравнение моментов составлять относительно той точки, чтобы в нем оказалась одна неизвестная, т. е. чтобы эту точку пересекали две другие неизвестные реакции. Оси же удобно выбирать так, чтобы большее число сил оказались параллельны осям, что упрощает составление уравнений проекций.

Пример 4. Для заданной конструкции, состоящей из двух ломаных стержней, определить реакции опор и давление в промежуточном шарнире С .

Дано:

Схема конструкции (рис. 6).

= 20 кН, = 10 кН, М = 4 кНм, = 2 кН/м, =2 м, =3 м, .

______________________________________

Определить реакции опор в точках А и В и давление в промежуточном шарнире С .

Статика определить реакции опор. Определение реакции опор с моментом

Рис. 6

Решение:

Рассмотрим равновесие всей конструкции (рис. 7).

К ней приложены:

активные силы ,, пара сил с моментом М , где

силы реакции:

, , , ,

Заменяют действие жесткого защемления;

Заменяет действие шарнирно-подвижной опоры А .

Расчетная схема

Статика определить реакции опор. Определение реакции опор с моментом

Рис. 7

Для полученной плоской произвольной системы сил можем составить три уравнения равновесия, а число неизвестных- четыре, , , .

Чтобы задача стала статически определимой, конструкцию расчленяем по внутренней связи – шарниру С и получаем еще две расчетные схемы (рис. 8, рис. 9).

Статика определить реакции опор. Определение реакции опор с моментом
Статика определить реакции опор. Определение реакции опор с моментом

Рис. 8Рис. 9

Заменяют действие тела АС на тело СВ , которое передается через шарнир С . Тело СВ передает свое действие на тело АС через тот же шарнир С , поэтому ; , .

Для трех расчетных схем в сумме можем составить девять уравнений равновесия, а число неизвестных – шесть , , , , , , то есть задача стала статически определима. Для решения задачи используем рис. 8, 9, а рис. 7 оставим для проверки.

Тело ВС (рис. 8)

Тело СА (рис. 9)

4) 

5) 

6) 

Решаем систему шести уравнений с шестью неизвестными.

Статика определить реакции опор. Определение реакции опор с моментом
Статика определить реакции опор. Определение реакции опор с моментом

Проверка:

Реакции внешних опор в точках А и В найдены верно. Давление в шарнире С вычисляем по формуле

Ответ: , , , , , ,

Минусы означают, что направления инадо изменить на противоположные.

Пример 5. Конструкция состоит из двух частей. Установить, при каком способе соединения частей конструкции модуль реакции наименьший, и для этого варианта соединения определить реакции опор, а также соединения С .

Дано: = 9 кН; = 12 кН; = 26 кНм; = 4 кН/м.

Схема конструкции представлена на рис.10.

Статика определить реакции опор. Определение реакции опор с моментом

Рис.10

Решение:

1) Определение реакции опоры А при шарнирном соединении в точке С.

Рассмотрим систему уравновешивающихся сил, приложенных ко всей конструкции (рис.11). Составим уравнение моментов сил относительно точки .

Статика определить реакции опор. Определение реакции опор с моментом

Рис.11

где кН.

После подстановки данных и вычислений уравнение (26) получает вид:

(2)

Второе уравнение с неизвестными и получим, рассмотрев систему уравновешивающихся сил, приложенных к части конструкции, расположенной левее шарнира С (рис. 12):

Статика определить реакции опор. Определение реакции опор с моментом

Рис. 12

Отсюда находим, что

кН.

Подставив найденное значение в уравнение (2) найдем значение :

Модуль реакции опоры А при шарнирном соединении в точке С равен:

2) Расчетная схема при соединении частей конструкции в точке С скользящей заделкой, показанной на рис. 13.

Статика определить реакции опор. Определение реакции опор с моментом

Рис. 13

Системы сил, показанные на рис. 12 и 13, ничем друг от друга не отличаются. Поэтому уравнение (2) остается в силе. Для получения второго уравнения рассмотрим систему уравновешивающихся сил, приложенных к части конструкции, расположенной левее скользящей заделки С (рис. 14).

Статика определить реакции опор. Определение реакции опор с моментом

Рис. 14

Составим уравнение равновесия:

Статика определить реакции опор. Определение реакции опор с моментом
Статика определить реакции опор. Определение реакции опор с моментом

и из уравнения (2) находим:

Статика определить реакции опор. Определение реакции опор с моментом

Следовательно, модуль реакции при скользящей заделке в шарнире С равен:

Итак, при соединении в точке С скользящей заделкой модуль реакции опоры А меньше, чем при шарнирном соединении ().

Найдем составляющие реакции опоры В и скользящей заделки.

Для левой от С части

,

Составляющие реакции опоры В и момент в скользящей заделке найдем из уравнений равновесия, составленных для правой от С части конструкции.

кН

Ответ: Результаты расчета приведены в таблице.

Момент, кНм
X AY AR AX CX BY BM C
Для схемы на рис.1118,419,9
Для схемы на рис.1314,3611,0917,3528,828,812,017,2

Пример 6.

Дано: вариант расчетной схемы (рис.15).

Р 1 = 14 кН; Р 2 = 8 кН; = 10 кн/м;М = 6 кНм; АВ = 0,5 м; ВС = 0,4 м; CD = 0,8 м; DE = 0,3 м; EF = 0,6 м.

Определить реакции в опорах А и .

Решение . Используя рекомендации примера 3, расставляем реакции в опорах. Их получается четыре (, , , ). Так как в плоской статике для одного тела можно составить только три уравнения равновесия, то для определения реакций необходимо разбить конструкцию на отдельные твердые тела так, чтобы число уравнений и неизвестных совпало. В данном случае можно разбить на два тела АВС и DEF . При этом в месте разбиения, т. е. в точке для каждого из двух тел появляются дополнительные реакции, определяемые по виду, числу и направлению так же, как и для точек А и . При этом по третьему закону Ньютона они равны по значению и противоположно направлены для каждого из тел. Поэтому их можно обозначить одинаковыми буквами (см. рис. 16).

Статика определить реакции опор. Определение реакции опор с моментом

Рис. 15

Далее, как и в примере 3, заменяем распределенную нагрузку сосредоточенной силой и находим её модуль . Затем выбираем оси координат и раскладываем все силы на рис. 15 и 16 на составляющие параллельные осям. После этого составляем уравнения равновесия для каждого из тел. Всего их получается шесть и неизвестных реакций тоже шесть (, , , , , ), поэтому система уравнений имеет решение, и можно найти модули, а с учетом знака модуля и правильное направление этих реакций (см. пример 3).

Статика определить реакции опор. Определение реакции опор с моментом

Рис. 16. Разбиение конструкции на два тела в точке , т. е. в месте их соединения скользящей заделкой (трение в ней не учитывается)

Целесообразно так выбирать последовательность составления уравнений, чтобы из каждого последующего можно было определить какую-то одну из искомых реакций. В нашем случае удобно начать с тела DEF , т. к. для него имеем меньше неизвестных. Первым составим уравнение проекций на ось х, из которого найдем F . Далее составим уравнения проекций на оси у и найдем D , а затем уравнение моментов относительно точки и определим D . После этого переходим к телу ABCD . Для него первым можно составить уравнения моментов относительно точки А и найти М А, а затем последовательно из уравнений проекций на оси найти A , A . Для второго тела необходимо учитывать свои реакции D , D , взяв их из рис.16, но значения этих реакций уже будут известны из уравнений для первого тела.

При этом значения всех ранее определенных реакций подставляются в последующие уравнения со своим знаком. Таким образом, уравнения запишутся так:

для тела DEF

Статика определить реакции опор. Определение реакции опор с моментом

для тела ABCD

Статика определить реакции опор. Определение реакции опор с моментом

В некоторых вариантах задан коэффициент трения в какой-то точке, например . Это означает, что в этой точке необходимо учесть силу трения , где A реакция плоскости в этой точке. При разбиении конструкции в точке, где учитывается сила трения, на каждое из двух тел действует своя сила трения и реакция плоскости (поверхности). Они попарно противоположно направлены и равны по значению (как и реакции на рис.16).

Реакция всегда перпендикулярна плоскости возможного скольжения тел либо касательной к поверхностям в точке скольжения, если там нет плоскости. Сила трения же направлена вдоль этой касательной либо по плоскости против скорости возможного скольжения. Приведенная выше формула для силы трения справедлива для случая предельного равновесия, когда скольжение вот-вот начнется (при непредельном равновесии сила трения меньше этого значения, а определяется её величина из уравнений равновесия). Таким образом, в вариантах задания на предельное равновесие с учетом силы трения к уравнениям равновесия для одного из тел необходимо добавить еще одно уравнение . Там, где учитывается сопротивление качению и задан коэффициент сопротивления качения , добавляются уравнения равновесия колеса (рис.17).

При предельном равновесии

Статика определить реакции опор. Определение реакции опор с моментом
Статика определить реакции опор. Определение реакции опор с моментом

Рис.17

Из последних уравнений, зная G , , R , можно найти N , тр, для начала качения без проскальзывания.

В заключение отметим, что разбиение конструкции на отдельные тела проводят в том месте (точке), где имеет место наименьшее число реакций. Часто это невесомый трос или невесомый ненагруженный рычаг с шарнирами на концах, которые соединяют два тела (рис 18).

Статика определить реакции опор. Определение реакции опор с моментом

Рис. 18

Пример 7 . Жесткая рама ABCD (рис. 19) имеет в точке А неподвижную шарнирную опору, а в точке б – подвижную шарнирную опору на катках. Все действующие нагрузки и размеры показаны на рисунке.

Дано: =25 кН,=60º , Р =18 кН,=75º , М= 50 кНм, = 30°, а= 0,5 м.

Определить: реакции в точках и В вызы­ваемое действующими нагрузками.

Статика определить реакции опор. Определение реакции опор с моментом

Рис. 19

Указания. Задача – на равновесие тела под действием произвольной плоской системы сил. При ее решении учесть, что натяжения обеих ветвей нити, перекинутой через блок, когда трением пренебрегают, будут одинаковыми. Уравнение моментов будет более простым (содержать меньше неизвестных), если составлять уравнение относительно точки, где пересекаются линии действия двух реакций связей. При вычислении момента силы F часто удобно разложить ее на составляющие ’ и ”, для которых плечи легко определяются, и воспользоваться теоремой Вариньона; тогда

Решение. 1. Рассмотрим равновесие пластины. Проведем коорди­натные оси ху и изобразим действующие на пластину силы: силу пару сил с моментом М, натяжение троса (по модулю Р) и реакции связей (реакцию неподвижной шарнирной опоры изображаем двумя ее составляющими, реакция шарнирной опоры на катках направлена перпендикулярно опорной плоскости).

2. Для полученной плоской системы сил составим три уравненияравновесия. При вычислении момента силы относительно точки воспользуемся теоремой Вариньона, т.е. разложим силуна состав­ляющие F΄ , F ˝ (, ) и учтем, что по теореме Вариньона: Получим:

  Рецепты кексов с молоком и без яиц. Шоколадный кекс без яиц
Статика определить реакции опор. Определение реакции опор с моментом

Подставив в составленные уравнения числовые значения заданных величин и решив эти уравнения, определим искомые реакции.

Ответ: X = -8,5кН; Y = -23,3кН; R = 7,3кН. Знаки указывают, что силы X A и Y A направлены противоположно силам, показан­ным на рис. 19.

Пример 8. Жесткая рама А BCD (рис.20) имеет в т. А неподвижную шарнирную опору, а т. D прикреплена к невесомому стержню. В т. С к раме привязан трос, перекинутый через блок и несущий на конце груз весом Р =20 кН. На раму действует пара силс моментомМ = 75 кНм и две силы F 1 =10 кН и F 2 =20 кН, составляющие со стержнями рамы углы =30 0 и =60 0 соответственно. При определении размеров рамы принять a =0,2 мОпределить реакции связей в точках А и D , вызванные действием нагрузки.

Дано : Р =20 кН, М =75 кНм , F 1 =10 кН, F 2 =20 кН, =30 0 , =60 0 , =60 0 , a = 0,2м.

Определить: Х А, У А, R D .

Статика определить реакции опор. Определение реакции опор с моментом

Рис. 20

Указания. Задача – на равновесие тела под действием произвольной плоской системы сил. При ее решении следует учесть, что натяжения обеих ветвей нити, перекинутой через блок, когда трением пренебрегают, будут одинаковыми. Уравнение моментов будет более простым (содержать меньше неизвестных), если брать моменты относительно точки, где пересекаются линии действия двух реакций связей. При вычислении момента силы часто удобно разложить ее на составляющие и для которых плечи легко определяются, и воспользоваться теоремой Вариньона; тогда

Решение.

1.Рассмотрим равновесие рамы. Проведем координатные оси х, у и изобразим действующие на раму силы: силы и , пару сил с моментом М, натяжение троса (по модулю Т = Р) и реакции связей (реакцию неподвижной шарнирной опоры А представляем в виде составляющих; стержневая опора препятствует перемещению т. D рамы в направлении вдоль стержня,поэтомувтомженаправлениибудетдействоватьи реакция опоры ).

2. Составим уравнения равновесия рамы. Для равновесия произвольной плоской системы сил достаточно, чтобы сумма проекций всех сил на каждую из двух координатных осей и алгебраическая сумма моментов всех сил относительно любой точки на плоскости равнялись нулю.

При вычислении моментов сил и относительно точки А воспользуемся теоремой Вариньона, т.е. разложим силы на составляющие , ; , и учтем, что .

Получим:

Подставив в составленные уравнения числовые значения заданных величин, и решив эти уравнения, определим искомые реакции.

Из уравнения (3) определяем R D =172,68 кН.

Из уравнения (1) определяем Х А = -195,52 кН.

Из уравнения (2) определяем У А = -81,34 кН.

Знаки «- » при величинах Х А и У А означают, что истинное направление этих реакций противоположно указанному на рисунке.

Проведемпроверку.

т. к. , то реакции опор найдены правильно.

Ответ: Х А = -195,52 кН, У А = -81,34 кН , R D = 172,68 кН.

Пример 9. Конструкция (рис. 21) состоит из жесткого угольника и стержня, которые в точке С свободно опираются друг о друга. Внешними связями, наложенными на конструкцию, являются: в точке А – жесткая заделка, в точке В – шарнир. На конструкцию действуют: пара сил с моментом М =80 кН·м, равномерно распределенная нагрузка интенсивности =10 кН/м и силы: =15 кН и =25кН. При определении размеров конструкции принять а =0,35 м. Определить реакции связей в точках А, В и С.

Дано: М =80 кН·м, =10 кН/м, F 1 =15 кН, F 2 =25 кН, а =0,35 м.

Определить: R A , M A , R B , R C .

Указания. Задача – на равновесие системы тел, находящихся под действием плоской системы сил. При ее решении можно или рассмотреть сначала равновесие всей системы, а затем равновесие одного из тел системы, изобразив его отдельно, или же сразу расчленить систему и рассмотреть равновесие каждого из тел в отдельности, учтя при этом закон о равенстве действия и противодействия. В задачах, где имеется жесткая заделка, следует учесть, что ее реакция представляется силой, модуль и направление которой неизвестны, и парой сил, момент которой также неизвестен.

Решение.

в ыполняем его в соответствии с изложенной выше методикой.

1. В данной задаче изучается равновесие системы, состоящей из жесткого угольника и стержня.

2. Выбираем систему координат ХАУ (см. рис. 21).

3. Активными нагрузками на данную систему являются: распределенная нагрузка интенсивностью , , и момент М.

Статика определить реакции опор. Определение реакции опор с моментом

Рис.21

Изобразим на чертеже предполагаемые реакции связей. Так как жесткая заделка (в сечении А ) препятствует перемещению этого сечения стержня вдоль направлений Х и У , а также повороту стержня вокруг точки А , то в данном сечении в результате действия заделки на стержень возникают реакции , , . Шарнирная опора в точке В препятствует перемещению данной точки стержня вдоль направлений Х и У . Следовательно, в точке В возникают реакции , и . В точке С опоры стержня на угольник возникают реакция действия угольника на стержень и реакция действия стержня на угольник. Эти реакции направлены перпендикулярно плоскости угольника, причем R C = R ¢ С (согласно закону о равенстве действия и противодействия).

1. Задачу решаем способом расчленения. Рассмотрим сначала равновесие стержня ВС (рис. 21, б ). На стержень действуют реакции связей , , , сила и момент. Для полученной плоской системы сил можно составить три уравнения равновесия, при этом сумму моментов внешних сил и реакций связей удобнее считать относительно точки В :

;;(1)

;; (2)

Из уравнения (3) получим: R c =132,38 кН.

Из уравнения (1) получим: Х В = -12,99 кН.

Из уравнения (2) получим: У В = -139,88 кН.

Реакция шарнира в точке В:

Теперь рассмотрим равновесие угольника СА (рис. 21, в ). На угольник действуют: реакции связей , сила . Заметим, что R / C = R C =132,38 кН. Для данной плоской системы сил можно составить три уравнения равновесия, при этом сумму моментов сил будем считать относительно точки С:

;;(4)

Из уравнения (4) получим: Х А = 17,75 кН.

Из уравнения (5) получим: У А = -143,13 кН.

Из уравнения (6) получим: М А = -91,53 кНм.

Задача решена.

А теперь для наглядного доказательства того, какое значение имеет правильный выбор точки, относительно которой составляется уравнение моментов, найдем сумму моментов всех сил относительно точки А (рис. 21, в ):

Из этого уравнения легко определить М А:

М А = -91,53 кНм.

Конечно, уравнение (6) дало то же значение М А, что и уравнение (7), но уравнение (7) короче и в него не входят неизвестные реакции Х А и У А, следовательно, им пользоваться удобнее.

Ответ: R A =144,22 кН, M A = -91,53 кНм, R B =140,48 кН,R C =R ¢ C =132,38 кН.

Пример 10 . На угольник АВС (), конец А которого жестко заделан, в точке С опирается стерженьDE (рис. 22, а ). Стержень имеет в точке неподвижную шарнирную опору, и к нему приложена сила , а к угольнику – равномерно распределенная на участке и пара с моментом М .

Статика определить реакции опор. Определение реакции опор с моментом

Рис. 22

Д а н о: =10 кН,М =5 кНм,q = 20 кН/м,а =0,2 м.

О п р е д е л и т ь: реакции в точках А С , вызванные заданными нагрузками.

Указания. Задача – на равновесие системы тел, находящихся под действием плоской системы сил. При её решении можно или рассмотреть сначала равновесие всей системы в целом, а затем – равновесие одного из тел системы, изобразив его отдельно, или же сразу расчленить систему и рассмотреть равновесие каждого из тел в отдельности, учитывая при этом закон о равенстве действия и противодействия. В задачах, где имеется жесткая заделка, учесть, что её реакция представляется силой, модуль и направление которой неизвестны , и парой сил, момент которой тоже неизвестен.

Решение. 1. Для определения реакций расчленим систему и рассмотрим сначала равновесие стержня DE (рис. 22, б ). Проведем координатные оси XY и изобразим действующие на стержень силы: силу , реакцию , направленную перпендикулярно стержню и составляющие и реакции шарнира . Для полученной плоской системы сил составляем три уравнения равновесия:

,;( 1)

Иметь представление о видах опор и возникающих реакциях в опорах.

Знать три формы уравнений равновесия и уметь их использо­вать для определения реакций в опорах балочных систем.

Уметь выполнять проверку правильности решения.

Виды нагрузок и разновидности опор

Виды нагрузок

По способу приложения нагрузки делятся на

· сосредоточенные и

· распределенные.

Если реально передача нагрузки происходит на пренебрежимо малой площадке (в точке), нагрузку называют сосре­доточенной.

Часто нагрузка распределена по значительной площадке или ли­нии (давление воды на плотину, давление снега на крышу и т.п.), тогда нагрузку считают распределенной.

В задачах статики для абсолютно твердых тел распределен­ную нагрузку можно заменить равнодействующей сосредоточенной силой (рис. 6.1).

– интенсивность на­грузки; I – длина стержня;

G = ql – равнодей­ствующая распределенной нагрузки.

Разновидности опор балочных систем (см. лекцию 1)

Балка – конструктивная деталь в виде прямого бруса, закреп­ленная на опорах и изгибаемая приложенными к ней силами.

Высота сечения балки незначительна по сравнению с длиной.

Жесткая заделка (защемление) (рис. 6.2)

 Опора не допускает перемещений и поворотов. Заделку заменя­ют двумя составляющими силы Rax и и парой с моментом Mr.

Для определения этих неизвестных удобно использовать систему уравнений в виде

Каждое уравнение имеет одну неиз­вестную величину и решается без подста­новок.

Для контроля правильности решений используют дополни­тельное уравнение моментов относительно любой точки на балке, например

Статика определить реакции опор. Определение реакции опор с моментом
Статика определить реакции опор. Определение реакции опор с моментом

Шарнирно-подвижная опора (рис. 6.3)

Опора допускает поворот вокруг шарнира и перемещение вдоль опорной поверхности. Реакция направлена перпендикулярно опорной поверхности.

Шарнирно-неподвижная опора (рис. 6.4)

Опора допускает поворот вокруг шарнира и может быть заме­нена двумя составляющими силы вдоль осей координат.

Балка на двух шарнирных опорах (рис. 6.5)


Не известны три силы, две из них – вертикальные, следовательно, удобнее для определения неизвестных использовать систему уравнений во второй форме:

Составляются уравнения моментов относительно точек крепле­ния балки. Поскольку момент силы, проходящей через точку креп­ления, равен 0, в уравнении останется одна неизвестная сила.

Статика определить реакции опор. Определение реакции опор с моментом

Для контроля правильности решения используется дополни­тельное уравнение

Статика определить реакции опор. Определение реакции опор с моментом

При равновесии твердого тела, где можно выбрать три точки, не лежащие на одной прямой, удобно использовать систему уравнений в третьей форме (рис. 6.6):

Статика определить реакции опор. Определение реакции опор с моментом

Примеры решения задач

Пример 1. Одноопорная (защемленная) балка нагружена со­средоточенными силами и парой сил (рис. 6.7). Определить реакции заделки.


Решение

2. В заделке может возникнуть реакция, представляемая двум: составляющими (Ay ,Ax ), и реактивный момент М A . Наносим на схему балки возможные направления реакций.

Замечание. Если направления выбраны неверно, при расчетах получим отрицательные значения реакций. В этом случае реакции на схеме следует направить в противоположную сторону, не повторяя расчета.

В силу малой высоты считают, что все точки балки находятся на одной прямой; все три неизвестные реакции приложены в одной точке. Для решения удобно использовать систему уравнений равновесия в первой форме. Каждое уравнение будет содержать одну неизвестную.

  Как настроить универсальный буфер обмена sierra. Осенняя чистка Mac: готовимся к обновлению macOS Mojave

3. Используем систему уравнений:

Статика определить реакции опор. Определение реакции опор с моментом

Знаки полученных реакций (+), следовательно, направления ре­акций выбраны верно.

3. Для проверки правильности решения составляем уравнение моментов относительно точки В.

Подставляем значения полученных реакций:

Статика определить реакции опор. Определение реакции опор с моментом

Решение выполнено верно.

Пример 2. Двухопорная балка с шарнирными опорами А и В нагружена сосредоточенной силой F, распределенной нагрузкой с интенсивностью q и парой сил с моментом т (рис. 6.8а). Определить реакции опор.


Решение

1. Левая опора (точка А) – подвижный шарнир, здесь реакция направлена перпендикулярно опорной поверхности.

Правая опора (точка В) – неподвижный шарнир, здесь наносим две составляющие реакции вдоль осей координат. Ось Ох совмещаем с продольной осью балки.

2. Поскольку на схеме возникнут две неизвестные вертикальные реакции, использовать первую форму уравнений равновесия нецеле­сообразно.

3. Заменяем распределенную нагрузку сосредоточенной:

G = ql; G = 2*6 = 12 кН.

Сосредоточенную силу помещаем в середине пролета, далее за­дача решается с сосредоточенными силами (рис. 6.8, б).

4. Наносим возможные реакции в опорах (направление произвольное).

5. Для решения выбираем уравнение равновесия в виде

Статика определить реакции опор. Определение реакции опор с моментом

6. Составляем уравнения моментов относительно точек крепления:

Статика определить реакции опор. Определение реакции опор с моментом

Реакция отрицательная, следовательно, А y нужно направить н противоположную сторону.

7. Используя уравнение проекций, получим:

R Bx – горизонтальная реакция в опоре В.

Реакция отрицательна, следовательно, на схеме ее направление будет противоположно выбранному.

8. Проверка правильности решения. Для этого используем чет­вертое уравнение равновесия

Подставим полученные значения реакций. Если условие выполнено, решение верно:

5,1 – 12 + 34,6 – 25 -0,7 = 0.

Пример 3. Опреде­лить опорные реакции балки, показанной на рис. 1.17, а .

Решение

Рассмотрим рав­новесие балки АВ. Отбросим опорное закрепление (задел­ку) и заменим его действие реакциями Н А, V A и т А (рис. 1.17, б ). Получили плоскую систему произвольно распо­ложенных сил.

Выбираем систему координат (рис. 1.17,6) и состав­ляем уравнения равновесия:

Статика определить реакции опор. Определение реакции опор с моментом

Составим проверочное уравнение

следовательно, реакции определены верно.

Пример 4. Для заданной балки (рис. 1.18, а ) определить опорные реакции.

Решение

Рассматриваем равновесие балки АВ. Отбра­сываем опорные закрепления и заменяем их действие реакциями (рис. 1.18,6). Получили плоскую систему про­извольно расположенных сил.


Выбираем систему координат (см. рис. 1.18,6) и со­ставляем уравнения равновесия:

q 1 ,

Расстояние от точки А q 1 (а + b);

Равнодействующая равномерно распреде­ленной нагрузки интенсивностью q 2 ;

Расстояние от точки А до линии действия равнодействующей q 2 (d – с).

Подставив числовые значения, получим

Статика определить реакции опор. Определение реакции опор с моментом

откуда V B = 28,8 кН;

Статика определить реакции опор. Определение реакции опор с моментом

 – расстояние от точки В до линии действия равнодействующей q 1 (a+b);

 – расстояние от точки В до линии действия равнодействующей q 2 (d – c).

Статика определить реакции опор. Определение реакции опор с моментом

откуда V A = 81,2 кН.

Составляем проверочное уравнение:

Пример 5. Для заданной стержневой системы (рис. 1.19, а ) определить усилия в стержнях.

Статика определить реакции опор. Определение реакции опор с моментом

Решение

Рассмотрим равновесие балки AB, к которой приложены как заданные, так и искомые силы.

На балку действуют равномерно распределенная на­грузка интенсивностью q, сила Р и сосредоточенный мо­мент т .

Освободим балку от связей и заменим их действие реакциями (рис. 1.19, б ). Получили плоскую систему про­извольно расположенных сил.

Выбираем систему координат (см. рис. 1.19, б ) и со­ставляем уравнения равновесия:

Где q (a b) – равнодействующая

равномерно распреде­ленной нагрузки интенсивностью q (на чертеже она показана штриховой ли­нией).

Подставив числовые значения, получим:

откуда N AC = 16 кН;

Статика определить реакции опор. Определение реакции опор с моментом

Напомним, что сумма проекций сил, образующих пару, на любую ось равна нулю;

Статика определить реакции опор. Определение реакции опор с моментом

где N BD cos α N BD “, N BF cos β – вертикальная составляющая силы N B(линии действия горизонтальных состав­ляющих сил N BD и N BF проходят через точку А и поэтому их моменты относи­тельно точки А равны нулю). Подставляя числовые значения и учитывая, что N B= 1,41 N BF , получаем:

Статика определить реакции опор. Определение реакции опор с моментом

откуда N B33,1 кН.

Тогда N BD = 1,41*33,1 = 46,7 кН.

Для определения усилий в стержнях не было исполь­зовано уравнение равновесия: ΣP to = 0. Если усилия в стержнях определены верно, то сумма проекций на ось v всех сил, действующих на балку, должна быть равна нулю. Проектируя все силы на ось v, получаем:

следовательно, усилия в стержнях определены верно.

Пример 6. Для заданной плоской рамы (рис. 1.20, а ) определить опорные реакции

Статика определить реакции опор. Определение реакции опор с моментом

Решение

Освобождаем раму от связей и заменяем их действие реакциями N А, V A , V B (рис. 1.20, б ). Получили плоскую систему произвольно расположенных сил.


Выбираем систему координат (см. рис. 1.20, б ) и составляем уравнения равновесия:

где Р 2 cos α – вертикальная составляющая силы Р 2 ;

P 2 sin α – горизонтальная составляющая силы Р 2 ;

2qa – равнодействующая равномерно распределенной нагрузки интенсивностью q (показана штриховой линией);

откуда V B = 5,27qa;

откуда H A =7qa

линия действия силы Р 2 cosα проходит через точку В и поэтому ее момент относительно точки В равен нулю

откуда V A = 7qa.

Для определения реакций не было использовано урав­нение равновесия ΣP iv =0. Если реакции определены верно, то сумма проекций на ось v всех сил, действую­щих на раму, должна быть равна нулю. Проектируя все силы на ось v, получаем:

следовательно, опорные реакции определены верно.

Напомним, что сумма проекций сил, составляющих пару с моментом т, на любую ось равна нулю.

Контрольные вопросы и задания

1. Замените распределенную нагрузку сосредоточенной и опре­делите расстояние от точки приложения равнодействующей до опо­ры А (рис. 6.9).

Статика определить реакции опор. Определение реакции опор с моментом

2. Рассчитайте величину суммарного момента сил системы от­носительно точки А (рис. 6.10).

Статика определить реакции опор. Определение реакции опор с моментом

3. Какую из форм уравнений равновесия целесообразно исполь­зовать при определении реакций в заделке?

4. Какую форму системы уравнений равновесия целесообразно использовать при определении реакций в опорах двухопорной балки и почему?

5. Определите реактивный момент в заделке одноопорной балки, изображенной на схеме (рис. 6.11).

6. Определите вертикальную реакцию в заделке для балки, представленной на рис. 6.11.

1. Определим опорные реакции балки. Составим урав­нения:

Из первого уравнения найдем V B:

или –15·2 + 20·6·2 – V B ·7 -25 = 0,

откуда  кН.

Из второго уравнения найдем V A:

или –15·9 – 20·6·5 + V А ·7 – 25 = 0,

откуда  кН.

Выполним проверку:

или 108,6 + 26,4 – 15 – 20 · 6 = 0,

откуда 135 – 135 = 0.

2. Обозначим характерные сечения балки С, D, А, Е, В, К.

3. Определим значения поперечных сил в характерных сечениях:

Q C = –= –15 кН;

Q D = –= –15 кН;

 кН;

4. Строим эпюру Q x . Соединим полученные значения прямыми линиями (рис. 11, б) и получим эпюру Q x . Эпюра Q x на участке АЕ пересекает нулевую линию. Определим положение точки, в которой эпюра Q x пересекает нулевую линию. Рассмотрим подобие треугольников HRL и HNS (см. рис. 11, б), откуда HR/HN = HL/HS, или х /5 = = 73,6/100, откуда

 м.

Это сечение считается также характерным для эпюры Q x и М х.

5. Определим изгибающие моменты в ха­рактерных точках:

= –15 · 5,68 – 20 · 4,68 · 2,34 + 108,6 · 3,68 = 95,4 кН м;

М В М = 25 кН м (рассмотрена правая часть балки ВК );

М К М = 25 кН м.

6. Строим эпюру М х на участках между характерными точка­ми:

а) на участке CD нагрузки нет, поэтому эпюра М х – прямая линия, соединяющая значения М С =0и М D = –15 кН м;

б) на участке DA М х – парабола.Так как эпюра Q x на этом участке не пе­ресекает нулевую линию, то парабола не имеет экстремального значения, поэтому величины изгибающих моментов в сечениях и А соединим кривой, значения которой находятся в интервале –15 кН м… – 40 кН м;

в) на участке АЕ действует распределенная нагрузка, поэтому эпюра М х – парабола. Так как эпюра Q x на этом участке пересе­кает нулевую линию, то парабола имеет экстремальное значение (вершину), поэтому эпюру М х строим по трем значениям:

М А = – 40 кН м; М х 0 = 95,4 кН м и М Е = 78 кН м;

д) на участке ВК нет нагрузки, поэтому эпюра М х – прямая ли­ния, соединяющая значения М В = 25 кН м и М К =25 кН м.

Эпюра М х построена (рис. 11, в).

Статика определить реакции опор. Определение реакции опор с моментом

В качестве проверки возьмем сумму моментов всех сил отно­сительно точки, расположенной на расстоянии х 0 от левой опо­ры, но рассмотрим правую часть балки:

M х 0 = ( х 0)(с  х 0)/2 + V B (с – х 0 + )+ М =

=–20 · 1,32 · 0,66 + 26,4 · 3,32 + 25 = 95,3 кН.

Разница в значениях М х при рассмотрении левых и правых сил возможна из-за округления величин опорных реакций и рас­стояния х 0 .

7. Подберем сечение стальной двутавровой балки по наибольше­му изгибающему моменту

По табл. 1 прил. I принимаем двутавровую балку №30 с W x =472 см 3 , что больше, чем W x т p =415 см 3 .

8. Проверим прочность принятого сечения:

Прочность сечения по нормальным напряжениям обеспечена.

Ответ: двутавровая балка № 30.

Задание для практического решения №4. Для балки на двух опорах, показанной на рис. 12, определить опорные реакции, проверить правильность определения реакций. Определить значения внутренних поперечных сил в характерных сечениях балки. Построить эпюру поперечных сил.Определить значения внутренних изгибающих моментов в характерных сечениях балки. Построить эпюру изгибающих моментов. Подобрать рациональное сечение двутавровой балки, если [σ] = 160 МПа. Проверить прочность выбранного сечения по нормальным.

Статика определить реакции опор. Определение реакции опор с моментом
Статика определить реакции опор. Определение реакции опор с моментом

Рис. 12. Продолжение

Статика определить реакции опор. Определение реакции опор с моментом

Рис. 12. Продолжение

Статика определить реакции опор. Определение реакции опор с моментом

Рис. 12. Продолжение

Статика определить реакции опор. Определение реакции опор с моментом

Рис. 12. Окончание

Контрольные вопросы

1) При каких внутренних силовых факторах в поперечном сечении бруса возникает деформация, названная чистым изгибом? Поперечным изгибом?

2) Как определить в любом поперечном сечении бруса величину поперечной силы и величину изгибающего момента?

3) Сформулируйте правило знаков при определении поперечной силы и изгибающих моментов?

4) Что такое эпюры поперечных сил и изгибающих моментов? Как и для чего они строятся?

5) На каких допущениях основаны выводы расчетных формул при изгибе?

6) По какой формуле определяют нормальные напряжения в поперечном сечении балки при изгибе и как они меняются по высоте балки?

7) Что такое осевой момент сопротивления сечения? Какова его физическая сущность и единицы измерения?

8) Какие формы поперечного сечения являются рациональными для балок из пластичных материалов и для балок из хрупких материалов?

9) Какие виды расчета можно производить из условия прочности при изгибе?

10) Почему при изгибе балки в её продольном сечении возникают касательные напряжения?

11) В каких случаях необходимо производить проверку балки по касательным напряжениям?

Если вы недавно прочитали книгу, то присоединяйтесь к нашему призыву и проголосуйте за нее!
( Пока оценок нет )
Поделиться с друзьями
3lions
Добавить комментарий

Нажимая на кнопку "Отправить комментарий", я даю согласие на обработку персональных данных и принимаю политику конфиденциальности